Generalized Maximum Entropy Estimation of Discrete Choice Models
نویسندگان
چکیده
منابع مشابه
Generalized maximum entropy estimation
We consider the problem of estimating a probability distribution that maximizes the entropy while satisfying a finite number of moment constraints, possibly corrupted by noise. Based on duality of convex programming, we present a novel approximation scheme using a smoothed fast gradient method that is equipped with explicit bounds on the approximation error. We further demonstrate how the prese...
متن کاملSimulated Maximum Likelihood Estimation of Dynamic Discrete Choice Statistical Models
This article reports Monte Carlo results on the simulated maximum likelihood estimation of discrete panel statistical models. Among them are Markov, Generalized Poly, Renewal, and Habit Persistence Models with or without unobserved heterogeneity and serially correlated disturbances. We investigate statistical properties and computational performance of simulated maximum likelihood methods and a...
متن کاملGeneralized Maximum Entropy Estimation of Spatial Autoregressive Models
We formulate generalized maximum entropy estimators for the general linear model and the censored regression model when there is first order spatial autoregression in the dependent variable and residuals. Monte Carlo experiments are provided to compare the performance of spatial entropy estimators in small and medium sized samples relative to classical estimators. Finally, the estimators are ap...
متن کاملGeneralized Reverse Discrete Choice Models
Marketing practitioners and academics have shown a keen interest in the processes that drive consumers’ choices since the early work of Guadagni and Little (1982). Over the past decade or so, a number of alternative models have been proposed, implemented and analyzed. The common behavioral assumption that underlines these models of discrete choice is random utility maximization (RUM). The RUM a...
متن کاملMaximum Entropy Distribution Estimation with Generalized Regularization
We present a unified and complete account of maximum entropy distribution estimation subject to constraints represented by convex potential functions or, alternatively, by convex regularization. We provide fully general performance guarantees and an algorithm with a complete convergence proof. As special cases, we can easily derive performance guarantees for many known regularization types, inc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Stata Journal: Promoting communications on statistics and Stata
سال: 2015
ISSN: 1536-867X,1536-8734
DOI: 10.1177/1536867x1501500210